104,20 €
122,59 €
-15% su kodu: ENG15
An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces
An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces
104,20 €
122,59 €
  • Išsiųsime per 10–14 d.d.
This book gives an introduction to modern geometry. Starting from an elementary level, the author develops deep geometrical concepts that play an important role in contemporary theoretical physics, presenting various techniques and viewpoints along the way. This second edition contains two additional, more advanced geometric techniques: the modern language and modern view of Algebraic Geometry and Mirror Symmetry.
104.20 2025-08-17 23:59:00
  • Extra -15 % nuolaida šiai knygai su kodu: ENG15

An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces + nemokamas atvežimas! | knygos.lt

Atsiliepimai

(4.50 Goodreads įvertinimas)

Aprašymas

This book gives an introduction to modern geometry. Starting from an elementary level, the author develops deep geometrical concepts that play an important role in contemporary theoretical physics, presenting various techniques and viewpoints along the way. This second edition contains two additional, more advanced geometric techniques: the modern language and modern view of Algebraic Geometry and Mirror Symmetry.

EXTRA 15 % nuolaida su kodu: ENG15

104,20 €
122,59 €
Išsiųsime per 10–14 d.d.

Akcija baigiasi už 4d.21:31:37

Nuolaidos kodas galioja perkant nuo 10 €. Nuolaidos nesumuojamos.

Prisijunkite ir už šią prekę
gausite 1,23 Knygų Eurų!?
Įsigykite dovanų kuponą
Daugiau

This book gives an introduction to modern geometry. Starting from an elementary level, the author develops deep geometrical concepts that play an important role in contemporary theoretical physics, presenting various techniques and viewpoints along the way. This second edition contains two additional, more advanced geometric techniques: the modern language and modern view of Algebraic Geometry and Mirror Symmetry.

Atsiliepimai

  • Atsiliepimų nėra
0 pirkėjai įvertino šią prekę.
5
0%
4
0%
3
0%
2
0%
1
0%
(rodomas nebus)